Audio-based context awareness - acoustic modeling and perceptual evaluation
نویسندگان
چکیده
This paper concerns the development of a system for the recognition of a context or an environment based on acoustic information only. Our system uses mel-frequency cepstral coefficients and their derivatives as features, and continuous density hidden Markov models (HMM) as acoustic models. We evaluate different model topologies and training methods for HMMs and show that discriminative training can yield a 10% reduction in error rate compared to maximum-likelihood training. A listening test is made to study the human accuracy in the task and to obtain a baseline for the assessment of the performance of the system. Direct comparison to human performance indicates that the system performs somewhat worse than human subjects do in the recognition of 18 everyday contexts and almost comparably in recognizing six higher level categories.
منابع مشابه
Allophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کاملReal-world acoustic event detection
Acoustic Event Detection (AED) aims to identify both timestamps and types of events in an audio stream. This becomes very challenging when going beyond restricted highlight events and well controlled recordings. We propose extracting discriminative features for AED using a boosting approach, which outperform classical speech perceptual features, such as Mel-frequency Cepstral Coefficients and l...
متن کاملPerceptual Synthesis Engine: An Audio-Driven Timbre Generator
A real-time synthesis engine which models and predicts the timbre of acoustic instruments based on perceptual features extracted from an audio stream is presented. The thesis describes the modeling sequence including the analysis of natural sounds, the inference step that finds the mapping between control and output parameters, the timbre prediction step, and the sound synthesis. The system ena...
متن کاملA Robust Environmental Sound Recognition System using Frequency Domain Features
In ubiquitous environments, analysis and classification of sound plays a critical role in various acoustic-based recognition systems. This work aims to contribute towards building an automatic sound recognition system that can understand the surrounding environment by the audio information. In this paper, an acoustic signal based context awareness system is proposed for detecting sound events i...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کامل